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MARINE GEOLOGY OF ASTORIA DEEP-SEA FAN

L. INTRODUCTION

Purpose

Astoria Fan is located at the base of the continental slope off
the northern coast of Oregon (Figure l). The Fan apex originates at
the mouth of Astoria Canyon which heads off the mouth of the
Columbia River. The prism of sediments constituting the fan forms
part of the continental rise, which is the lowest part of the continental
margin.(Heezen and Menard, 1963).

History of continental rise sediments in this transition region
between continental terrace and the deep -sea recently has been of
great interest to marine geologists. Kﬁowledge from this region
where continental and oceanic crust meet is needed to understand
mechanisms of possible continental drift, sea floor spreading, and '
continental accretion. In this region at the base of the continental
slope great quantities of land derived sediments are known to ac-
cumulate. Study of continental rocks indicates that some of these
deep-sea sediments-may eventually be added to the continents. Con-
sequently, knowledge of depositional history of present continental

rise sediments can be applied for the understanding of continental

rocks with a similar history.
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To help understand present and past environments this dis-
sertation studies the sediments; the sedimentary processes, and
the history of Astoria Fan. Progressive changes in physiography,
stratigraphy, texture, and composition can be traced from the mouth
of Astoria Canyon which has served as a point source for much of
the fan sediment. By ascertaining trends of such parameters in the
unconsclidated sediments, the depositional history of similar sedi-

mentary rocks may be better understood.

Previous Work

Bathymetry, geomorphology, and recent sediments of the
Northeast Pacific have been studied; by Menard (1953, 1955), Nayudu
(1959), and Hurley (1960), but no detailed investigation of Astoria
Fdi has been made by anyone. The most recent geologic work re-
lated to Astoria Fan has been accomplished by the Oceanography
Departmenfs of the University of Washington and of Oregon State
University. Royse (1964) made a detailed study of sediments in
Willapa Canyon a few miles north of Astoria Canyon. Sediments and
radioactivity in the vicinity of the Columbia River effluent have been
reported by Gross, McManus, and Creager (1963), Osterberg,
Kulm, and Byrne, (1963), and Gross and Nelson {1966). A cursory
analysis of the micro-fossils was made for a very few surface sedi-

ment samples from the Astoria Fan region by Nayudu and



Enbysk (1964). In a paper on regional physiography McManus
(1964b) outlined the major bathymetric features of the fan. He also
described surface sediment color in a few samples from Astoria
Fan,(McManus, 1964a),

Recent research at Oregon State University has outlined
characteristics for the regions near and adjoining Astoria Fan.,
The continental terrace bathymetry and shelf sediments along the
Oregon coast have been analyzed by Byrne (1962, 1963a, 1963b) and
Runge (1965). Maloney (1965) studied the bathymetry and sediments
of the shelf and slope off the Central Oregon coast, and Byrne,
Fowler and Maloney (1966) reported on the uplift and possible con-
tinental accretion in this region. Adjacent to Astoria Fan, the
bathymetry and sediments of Astoria Canyon have been examined by
Carlson (1967); Kulm and Griggs (1966) have reported on sediments
of Cascadia Channel; and Kulm and Nelson (1967) have compared

channel and interchannel deposits.



Il. GEOLOGIC SETTING

Continental Geology

Numerous small streams and rivers which empty directly into
the Pacific Ocean, drain the west slopes of the Coast Range.

Rocks of the Oregon Coast Range (Figure 1) include a lower
sequence of thick submarine volcanic flows of early Eocene age and
an upper sequence of tuffaceous sedimentary rocks of Eocene to
Pliocene age (Snavely and Wagner, 1964). The sedimentary group
consists mainly of micaceous and arkosic sandstones and sandy silt=-
stones. Sedimentary rocks similar to those appear to extend to the
| shelf and slope offshore (Byrne, 1963). Maloney (1965) and Fowler
(1966) reported finding diatomaceous and clayey siltstones, and
calcareous siltstones of Upper Miocene and Pliocene age.

To the east of the Coast Range is a structural depression, the
Puget Sound-Willamette Valley Trough (Figure 1l). This region is
underlain mainly by Tertiary sedimentary and volcanic rocks and is
drained by tributaries of the Columbia River (Baldwin, 1964).

Inland from the trough lie the Cascade Mountains. The older
Western Cascades are composed mainly of basalts that were laid
down from Eocene to Miocene time (Baldwin, 1964). The High

Cascades formed since the Pliocene and were built mainly from



andesitic flows and pyroclastics. (Williams, 1942).

East of the Cascade Range the Columbia Plateau basalts cover
an area of about 200, 000 square miles. These are fissure flows of
olivine and tholeiitic basalts that poured out during the Miocene
(Waters, 1955 and 1961). To the east of the Columbia Plateau are
the northern Rocky Mountains. These are mainly folded and faulted
metamorphic and sedimentary rocks, except for the granitic Idaho

batholith.

Columbia River Drainage

Development of the modern Columbia River drainage probably
began in the Miocene (Mackin and Cary, 1965). The Columbia River
gorge cuts through the Cascades and Coast Rarige which indicates thatthe
p.resent drainage pattern of the Columbia was developed by the time
of the Plio-Pleistocene uplift of these mountains.

The lower Columbia River may have had catastnophic floods
during the Pleistocene when ice dams forming Lake Missoula broke
and released meltwater of the continental glaciers (Bretz etal.,
1956). The last catastrophic flood is believed to have occurred dur-
ing Pinedale glaciation 18, 000 years B, P. (Richmond etal., 1965).
These authors feel that extensive flooding in the Columbia River
valley took place until 12, 000 years B. P. Flooding in the pre-

historic Post-Pleistocene may have been comparable to that observed



by the U. S. Army Corps of Engineers during the past 100 years.

The present .Columbia River is the largest river in the Pacific
Northwest and third largest river in the United States (Highsmith,
1962). It drains all of the aforementioned geologic provinces
(Figure 1) and the.resulting discharge and sediment load ca;n"ied to
the Pacific Ocean is very large and complex.

Annual discharge of the Columbia River is approximately 180
million acre feet (7.8 x 1012 cubic feet) of water (Lockett, 1965).
Maxiraum discharge up to 1, 240, 000 cfs (cubic feet per second) (U.
S. Army Engineers, 1961) occurs in the early summer because of
melting snow in the Cascades and Rockies. Major flood conditions
(750, 000 cfs) have occurred 20 times in the last 100 years and
floods over 1, 000, 000 cfs .have occurred on an average of once every
. 25 years.

The average annual amount of suspended sediment transported
toward the sea by the Columbia River is approximately. 14, 500, 000
cubic yards (U.S. Army.Corps of Engineers, 1962). Lockett (1965)
reported an average annual bed load of 4, 000, 000 tons (1, 780, 000

cu, yards) at the Vancouver, Washington, station.



II. OCEANOGRAPHIC SETTING
General

Oceanographic conditions are of considerable_importance to
the sedimentation of Astoria Fan. Currents and water masses de-
termine the distribution of biota and suspended sediments that filter
through the water column. Currents along the bottom affect the
erosion, transportation, and deposition of sediments. The physical
and chemical properties of the water influence the distribution and"
abundance of planktonic organisms in the water column. Planktonic
productivity, in tlurn,. affects the number and kinds of benthonic

animals that rework and alter the sediments.

Water Masses

The most extensive water mass off the Oregon coast is re-
ferred to as -Modified &Subarctic Water (Rosenberg, 1962). It consists
mainly of Subarctic Water, (2° to 4° and 32 o0/00-34 0/00) mixed )
with a small amount of Pacific: Equatorial Water (8-15°C and
34. 6 o/00=35. 2 0/00) (Sverdrup, Fleming, and Johnson, 1942). In-
shore, over the continental terrace, the percentage of Equatorial
Water increases and this modified water is called Coastal Water
(Rosenberg, 1962). As a result of streams and rivers discharging

into the ocean, inshore surface water is somewhat diluted in many



areas.

The Columbia River introduces the greatest quantity of fresh
water into the ocean along the Oregon coast. At sea the Columbia
River effluent is confined to the upper 40 meters of water,
(Budinger, Coachman,' and Barnes, 1964) and can dilute the near-
shore waters to a salinity below 32 o/oo (Nlorse and McGary, 1965).
Budinger et al. (1964) reported that during the summer the effluent
extends south from the mouth of the river some 750 kilometers to
near 40° N Latitude, and that the western boundary was 210 kilom-
eters from shore. Osterberg, Cutshall, and Cronin (1965) traced
the Columbia plume only 350 km. south in the summmer; they found
that in the winter the effluent occupies a belt 30 to 55 kilometers:
wide adjacent to the continent and extends from about 40 kilometers
south of the mouth of the Columbia River to north of the Strait of

Juan de Fuca.
Currents

Nearshore Currents

Winds are predominantly from north to northwest during the
spring and summer months, and the California Current System
dominates with current and littoral drift to the south (Lane, 1965).

These northerly winds also cause the surface coastal water to be
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carried offshore by Ekman transport which results in upwelling
(Smith, 1964). During the fall and winter the winds are predomi-
nantly from the south-southwest and the littoral drift is to the north.
Upwelling ceases in the fall and a counter-current develops in the
surface layers, the Davidson Current; this current carries water:

Recently, current velocity and direction data have been col-
lected over the continental terrace off central Oregon by means of
current drogues, and by current meters moored to buoys and to oil
drilling barges (Collins, Creech, and Pattullo, 1966). Current
meters,about 20 m above the continental shelf seafloor, measured
maximum current velocities of 73 cm/sec at 60 m depth and
61 cm/sec at 75 m depth during the winter (Collins, Creech, and
Pattullo, 1966). Maximum velocities at similar depths in other sea-
sons of the year were much lower. In water 200 to 1000 m above the
continental slope, currents ranged from 3. 4 to 7. 0 cm/sec with the
exception of one reading of 14 cm/sec (Stevenson, 1966). At 1000
meters, Stevenson (1966) found a mean speed of 4 crn/sec. These
data suggest that sand-size material occasionally may be carried
by shelf currents beyond the nearshore zone, but that sand-+size-
material is not carried by currents. in the deep sea.

Upwelling currents and tidal currents,as well as wind driven

currents, may influence distribution of organic remains and inorganic
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sediments (Cartwright, 1959). Tidal current speeds from 4. 0
cm/sec over .Stonewall Bank to 7. 5 cm/sec off Depoe Bay, Oregon
suggest that tidal currents have little effect on sediment distribution
off Oregon (Pattullo, 1966). Likewise, very low average speeds
(<. 01 cm/sec) calculated for upwelling (Smith, 1964) show that these
currents are insignificant for sediment transport. However, deep
water chemical and physical characteristics are measured in sur-
face water to nearly 100 km offshore during the summer months
(Park, Pattullo, and Wyatt, et al., 1962); this indicates that upwell-
ing may affect productivity and, consequently, organic deposition

over the sHelf.

Bottom Currents

Measurements of deep-sea bottom currents off Oregon, are
the most pertinent for this study, but only scant data are available.
Carruthers (Personal communication, 1965), using a current meter
of unproven reliability, reported a bottom current of 0. 7 knots 170
miles west of the mouth of the Columbia River on Cascadia Abyssal
Plain just west of Astoria Fan. Mesecar (1967) measured steady
bottom currents over a 24 hour period of 6 cm/sec at 100 fathoms
over the continental slope west of Depoe Bay, Oregon,

Measured current velocities less than five meters above the

deep-sea bottom generally are lower than sea floor velocities
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assumed from deep-sea current studies (Table 1) and used for geo-
logical inference (Heezen and Hollister, 1964a, Hubert, 1964). The
highest current velocity reported less than 5 m above the bottom is
25 cm/sec in the axis at Scripps Canyon, California (Shepard, 1965).
This was not a time series study on the sea floor, but a diving
saucer observation. The classical idea of slow, steady drift along
the deepﬂ-sea floor is no longer valid; however, it is obvious that
more data are necessary to verify the postulations of transport of

coarse materials by deep-sea bottom currents (Knauss, 1965).

Internal Wave Currents

The effect of internal wave currents at the bottom is ar;other
phenomenon that is little known, especially in the deep sea, where
interactions m&y, be different than on the continental terrace. LaFond
(1961) found internal wave currents with speeds of 5-30 cm/sec in
shallow waters of Southern California. These currents would be of
sufficient intensity to move sandy sediments in a seaward direction

(LaFond, 1961).

Seismic Seawave Currents

Heck (1947) reported five seismic seawaves over a 20 year
period in the Pacific Northwest. These shallow water waves ''feel

the bottom' over their entire path. The seismic seawave from the
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Table 1. Direct Current Measurements within 5 m. of the Deep-sea Bottom

Water Meters Curmrent
depth above velocity
Investigator Location {meters) bottom _ (cm/sec) Type of instrument
Emery Center~ 800 0.2 2.5 Ekman current meter
(1956) Santa Cruz below 0.5 13,5 Ekman current meter
Basin sill depth
Center- ca. 825 0.2 2.8 Ekman current meter
San Pedro below 0.5 18.0 Elanan current meter
Basin sill depth
Swallow et al. 33207' N 3,230 0] 11,5+1,5 photographic bottom
(1961) 75 42'' W current meter
McAllister Bermuda 3,760 5 6.7 Savonius rotor
(1962) Plantage- current meter
net: Bank
LaFond 3z°g7' N 1,180 0.15 1-3 inclinometer attached
(1962) 117730' w av. 2.1 to Trieste
*
Throndike 50 N. M. 4, 400 0.0 7.6 suspended drop
(1963) south of current meter
Bermuda
Pratt Blake ~ 786- 0.0 av. 25 photographic current
(1963) Plateau 841 max., 47  meter (ping pong balls)
Knauss Central Atl. Savonius meter moored
(1965) (W. slope Ber- to the bottom for given
- muda Rise) time and then released
° .
3201 1N 5,192 3.5 14-21
68 12'w 17-mean
32205' N 5, 182 3.5 10-15
68 12''w 12-mean
34224' N 5, 337 3.5 0-2
69 47" W
Guéf Stream
36004' N 3,584 3.5 7.5-14
73°13' w 9.7-mean
Isaacs et al. 300-800 N.M. 3,700~ 3.0 1-4 Savonius meter moored
(Mooérs, 1967)  off Baja, 4,300 2.2-mean to the bottom for given
California time and then released

%
N. M. = nautical mile
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Alaska earthquake of March 27, 1964, had a speed of 280 knots, a
period of 40 minutes, and a wave length of 294 nautical miles (Schatz,
1965). Assuming an amplitude of 0. 5 meters for this wave, Carlson
(1967) calculated a particle velocity of 35 cm/sec at 1000 fathoms.

According to Sundborg (1956), this velocity could cause erosion of

unconsolidated medium sand on the deep sea floor.

Biological Oceanography

The same Ekman drift offshore that causes upwelling and high
productivity moves phytoplankton crops away from the nearshore re-
gions (Curl, 1966). This results in zooplankton and benthic popula-
tions having their maximum productivity offshore (Curl, 1966).
Maximum standing crops of ‘foraminifera occur in the middle shelf
to upper slope area off Cape Argo, Oregon (Boettcher, 1966).
Macro-fauna also are most abundant at the shelf-slope break off
Newport, Oregon, but decrease to very low densities in the abyssal
region (Carey, 1966). As the sediment becomes finer with depth,
polychaetes (burrowing forms) incréase in relative abundance over
filter feeding organisms which are dominant in sands on the inner
shelf (Carey, 1966). Over most of the abyssal plain polychaetes are
the most important group.

Distribution of organic carbon in the sediment correlates best

with the polychaete distribution (Carey, 1966), and this in turn is
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often related to sediment size (Trask, 1939). Gross (1966) found a
maximum concentration of organic carbon on the continental slope
in the Northeastern Pacific. He attributed this to oxygen minimum

layer depths rather than to the fine sediments and high biota on the

upper slope.
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IV, PHYSIOGRAPHY
General

Astoria Fan is a wedge of sediments covering about 20, 000
km2 (6, 000 sq miles) . = the continental rise off the coast of Oregon
(Figure 1). It is bounded on the north by Willapa Seachannel and on
the west by Cascadia Channel (Figure 1). Willapa Seachannel begins
north of Astoria Canyon and appears to extend from Willapa Canyon.
Cascadia Channel also originates north of Astoria Canyon and Fan
near the apex of Nitinat Fan (McManus, 1964b, p. 70). The southern
boundary of the Astoria Fan is not definitive; however, beyond 1550
fathomsl, the fan shape is not present and seamounts disrupt the
sea floor. The continental terrace forms the eastern boider of the

fan region.

Continental Terrace

The physiography of the continental terrace off Oregon which
consists of the continental shelf and the continental slope, has been
described by Byrne (1962, 1963a, 1963b) and Maloney (1965). The

. . . . 2
continental terrace is narrower (35-60 nautical miles"), the

1One fathom equals six feet,

2All distances expressed in miles are nautical miles. One
1. v 1 mile equals 6076. 12 feet.
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continental shelf is steeper (0‘108' - 0°43'), and the continental slope
is flatter (northern portion 1°11' - 1°35!') than avéra.ge regions of the
world (Shepard, 1963). The shelf to slope break or shelf edge gen-
erally occurs in water 80 fathoms deep; the edge of the abyssal plain,
in water 1000-1700 fathoms deep. Shallow banks of bedrock extend
the shelf to slope boundary seaward and cause the irregular outline
of the shelf (Figure 1). The continental slope has a number of

separate slopes and scarps interrupted by benches, depressions, and

small valleys.

Astoria Canyon

Astoria Canyon, which is the only sizable submarine valley
crossing the Oregon slope, has been studied by Byrne (1963) and
Carlson (1967). The canyon heads in about 55 fathoms of water ap=
proximately 90 miles west of the mouth of the Columbia River, and
extends some 60 miles to a depth of 1, 140 fathoms. It is mildly

. sinuous and exhibits an overall orientation to the west-southwest.
The average width of the canyon is 3.8 miles with a range of 1. 3 -
7. 2 miles. The average floor width is 1. 2 miles. In the area of the
outer shelf, the canyon is one mile wide at the bottom, three miles
wide at the top, .  and has 300-400 fathoms of relief. At the canyon
mouth the floor is about 0. 5 miles wide, the rim is 4. 5 miles wide

g’nd the wall relief is 150-200 fathoms. The slope along the axis

-
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varies irregularly from 0°31' to 3°57!', but overall thé average
gradient is 1°, Average steepness of canyon walls is 6° and where
the canyon crosses the shelf the walls are steeper on the south side
than on the north side. Along both walls precision depth records sug-
gest that slumping is an important process and that maximum slopes
are about 30°. These maximum values may be below actual values.
Observations of canyon walls from submersibles (Buffington, 1964;
Shepard, 1965) indicated much steeper walls than did previous meas~

urements by depth recorders and wire line soundings.

Astoria Fan

Methods of Study

The Precision Depth Recorder (PDR,, Mark V), coupled with an
Edo (185) echo sounder,was used for completing 1064 miles of sound-
ing lines (Figure 2). Loran A was used to obtain geographic posi-
tions at 1..5..minute intervals. In addition,bathymetry was synthesized
" from data of Hurley (1960), McManus(1964b), Byrne (1963), and
smooth sheets of the U. S. Coast and Geodetic Survey and the U. S.
Naval Oceanographic Office (Figure 3). P"articular attention was
given to the Astoria Canyon mouth and the fan valley systems extend-

ing from it. Soundings were obtained for a five mile grid transverse
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to Astoria Channel and the Slope Base Fan Valle‘)r3 (Figure 2).
Bathymetry of the fan valley systems was contoured from new gound-
ings that were compiled and plotted by the IBM 1620 computer and

the X-Y plotter (Figure 4).

General Shape

- Astoria Fan, which is asymetricall, extends about 55 miles
west of the mouth of Astoria Canyon, and only about 15 miles to the
north where it abuts Willapa Channel (Figures 1 and 2). Seventy-five
miles south of the canyon mouth the 1550 fathcm contour extends 75
miles west and is the last one to outline the shape of the fan. Some
investigators extend the fan south another 50 miles through a depres-
sion between the continental terrace and the Blanco fracture region
(Figure 1; McManus, 1964b). In this study, the 1550 fathoms depth
arbitrarily is defined as the fan margin because the sea floor to the
south is not fan shaped and is disrupted by seamounts, ‘Casradia

Channels andithe Blanco Fracture Zone.

Physiographic Divisions

Investigators generally have divided deep-sea fans into two

3Under Shepard's (1965) classification both of these features
‘are fan valleys. This term will be used in describing general channel
systems of the fan, but use of the proper name for the main fan
valley, Astoria Channel, will be continued.
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parts, the upper and the lower (Heezen and Menard, 1963; McManus,
1964). Detailed analysis indicates that Astoria Fan can be divided
into three regions on the basis of gradient, relief, and character of
the slope (Figures 5 and 6). The upper fan is a region of relatively
deep, narrow fan valleys, steep slope, and rough topography. The
middle fan has fan valleys that begin to broaden and split into dis=
tributaries, a fan gradient that flattens sharply from the upper fan,
and a relief that is less than half that of the upper fan. The lower fan
is a region of nearly flat topography with shallow distributaries.
.Lower fan gradients in some places become less than those of abys-

sal plains.

UBBer Fan

The upper fan includes the region from the mouth of Astoria
Canyon to 1330 - 1390 fathoms. In the northwest and west portions
of the fan the break in gradient occurs from 1370-1390 fathoms; in
the southern part of the fan it usually takes place near 1340 fathoms.
The surface of the upper fan is mainly concave upward (Figure 6).

The upper fan is generally steeper and has rougher topography
than that cited for most fans (Heezen and Menard, 1963). Relief of
10-20 fathoms is not uncommon and occasionally is up to 30 fathoms
(Figure 6). In some locations, although the gradiént is still very

steep, the surface is smooth.
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Gradients in the upper fan range from 1:15 to nearly 1:100, but
usually are near 1:50 - 1:60. Slopes of the channel axis in this re-

gion are less steep than fan surface gradients and as a rule are less

than 1:100 (Table 2). The steepest slopes are found on the fan valley

walls,
Middle Fan

The middle fan extends from the break in slope at the edge of
the upper fan to about 1460 fathoms in the southern region of the fan.
The outer boundary of the middle fan region is not nearly as distinc-
tive as the upper to middle fan break.

Compared to the upper and lower portions of the fan, the middle
fan appears to have a convex upward surface, even in the channels.
The relief, which commonly is about ten fathoms, and the slope
gradients are much lower than those on the upper fan. The middle
fan gradient generally is between 1:25.0 - 1:350, but maximum slopes
range to nearly 1:100, and the minimum gradient ranges up to about
1:400. . The channel gradients are more inclined than the normal fan

surface and usually are steeper than 1:200 (Table 2).
Lower Fan

Usually,a slight break in slope marks the beginning of the lower

fan, although middle fan slopes may grade quite evenly into the lower
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